HEALTH NEWS

Study Title:

Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging.

Study Abstract

OBJECTIVE:
Higher dietary intake and circulating levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been related to a reduced risk for dementia, but the pathways underlying this association remain unclear. We examined the cross-sectional relation of red blood cell (RBC) fatty acid levels to subclinical imaging and cognitive markers of dementia risk in a middle-aged to elderly community-based cohort.

METHODS:
We related RBC DHA and EPA levels in dementia-free Framingham Study participants (n = 1,575; 854 women, age 67 ± 9 years) to performance on cognitive tests and to volumetric brain MRI, with serial adjustments for age, sex, and education (model A, primary model), additionally for APOE ε4 and plasma homocysteine (model B), and also for physical activity and body mass index (model C), or for traditional vascular risk factors (model D).

RESULTS:
Participants with RBC DHA levels in the lowest quartile (Q1) when compared to others (Q2-4) had lower total brain and greater white matter hyperintensity volumes (for model A: β ± SE = -0.49 ± 0.19; p = 0.009, and 0.12 ± 0.06; p = 0.049, respectively) with persistence of the association with total brain volume in multivariable analyses. Participants with lower DHA and ω-3 index (RBC DHA+EPA) levels (Q1 vs Q2-4) also had lower scores on tests of visual memory (β ± SE = -0.47 ± 0.18; p = 0.008), executive function (β ± SE = -0.07 ± 0.03; p = 0.004), and abstract thinking (β ± SE = -0.52 ± 0.18; p = 0.004) in model A, the results remaining significant in all models.

CONCLUSION:
Lower RBC DHA levels are associated with smaller brain volumes and a "vascular" pattern of cognitive impairment even in persons free of clinical dementia.

Study Information

Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, Pikula A, Decarli C, Wolf PA, Vasan RS, Robins SJ, Seshadri S.
Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging.
Neurology.
2012 February
UCLA