HEALTH NEWS

Study Title:

Poor Diet During Pregnancy Causes Diabetes in Offspring

Study Abstract

Nutrition during fetal life is a critical factor contributing to diabetes development in adulthood. The aim of our study was to verify: 1) whether a high-fat (HF) diet in young adult mice induces alterations in beta-cell mass, proliferation, neogenesis, and apoptosis, as well as insulin sensitivity and secretion; 2) whether these alterations may be reversible after HF diet suspension; 3) the effects in a first (F1) and second generation (F2) of mice without direct exposure to a HF diet after birth. Type 2 diabetes developed in adult mice on a HF diet, in F1 mice that were HF diet-exposed during fetal or neonatal life, and in F2 mice whose mothers were HF diet-exposed during their fetal life. beta-cell mass, replication, and neogenesis were high in HF diet-exposed mice and decreased after diet suspension. beta-cell mass and replication remained high in F1 mice and decreased in F2 mice whose mothers were exposed to a HF diet. beta-cell neogenesis was present in adult mice on a HF diet and in F1 mice that were HF diet-exposed during fetal and/or neonatal life. We conclude that a HF diet during fetal life, particularly if combined with the same insult during the suckling period, can induce the type 2 diabetes phenotype, which can be directly transmitted to the progeny even in the absence of additional dietary insults.

From press release:

A new study in the September issue of the Journal of Lipid Research suggests an unusual form of inheritance may have a role in the rising rate of diabetes, especially in children and young adults, in the United States.

DNA is the primary mechanism of inheritance; kids get half their genes from mom and half from dad. However, scientists are just starting to understand additional kinds of inheritance like metabolic programming, which occurs when an insult during a critical period of development, either in the womb or soon after birth, triggers permanent changes in metabolism.

In this study, the researchers looked at the effects of a diet high in saturated fat on mice and their offspring. As expected, they found that a high-fat diet induced type 2 diabetes in the adult mice and that this effect was reversed by stopping the diet.

However, if female mice continued a high-fat diet during pregnancy and/or suckling, their offspring also had a greater frequency of diabetes development, even though the offspring were given a moderate-fat diet. These mice were then mated with healthy mice, and the next generation offspring (grandchildren of the original high-fat fed generation) could develop diabetes as well.

In effect, exposing a fetal mouse to high levels of saturated fats can cause it and its offspring to acquire diabetes, even if the mouse goes off the high-fat diet and its young are never directly exposed.

The study used mice so it's not time to warn women to eat differently during pregnancy and breastfeeding but earlier research has shown that this kind of inheritance is at work in humans. For example, there is an increased risk of hypertension and cardiovascular disease in children born of malnourished mothers.

Study Information

Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, Vettor R.
Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny.
The Journal of Lipid Research
2008 September
Department of Internal Medicine, Università Cattolica S. Cuore, Roma, Italy.