HEALTH NEWS
Study Title:
Inflammation Drives Excess Osteoclast Formation Resulting in Bone Loss
Study Abstract
Osteoclasts are cells of monocyte-macrophage origin that degrade bone matrix. Receptor activator of NF-kappaB ligand (RANKL) induces osteoclast formation in the presence of macrophage-colony-stimulating factor (M-CSF) and costimulatory signals. RANKL induces activation of the TNF receptor-associated factor 6 (TRAF6) and c-Fos pathways, which lead to the osteoclast-specific event, that is, autoamplification of nuclear factor of activated T cells (NFAT)c1, the master transcription factor for osteoclast differentiation. Autoamplification of NFATc1 is dependent on the calcium signaling of immunoglobulin-like receptors associated with immunoreceptor tyrosine-based activation motif (ITAM)-harboring adaptors. In addition to the calcineurin-NFATc1 axis, calcium signaling activates the calmodulin-dependent kinase pathway, which also plays a critical role in osteoclast formation. Such advances in the understanding of the molecular mechanism of osteoclast differentiation are expected to lead to novel therapeutic approaches to bone diseases.
Study Information
Takayanagi H.The role of NFAT in osteoclast formation.
Ann N Y Acad Sci.
2007 November
Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Recent News
Protect Your Gut Mucosal Barrier for Immune Health and Vitality
The Truth About Sugar Substitutes: Are Stevia, Sucralose, and Saccharin Safe?
Boost Your Digestive Power for Better Nutrient Absorption and Gut Health
MTHFR Gene and The Importance of Methyl B12 and Methyl Folate
Do You Need a Multivitamin? What Science Says About Brain Health and Memory