HEALTH NEWS

Study Title:

DHA, Inflammation, Obesity, and Diabetes

Study Abstract

Omega-3 fatty acids (-3 FAs), DHA and EPA, exert anti-inflammatory effects, but the mechanisms are poorly understood. Here, we show that the G protein-coupled receptor 120 (GPR120) functions as an -3 FA receptor/sensor. Stimulation of GPR120 with -3 FAs or a chemical agonist causes broad anti-inflammatory effects in monocytic RAW 264.7 cells and in primary intraperitoneal macrophages. All of these effects are abrogated by GPR120 knockdown. Since chronic macrophage-mediated tissue inflammation is a key mechanism for insulin resistance in obesity, we fed obese WT and GPR120 knockout mice a high-fat diet with or without -3 FA supplementation. The -3 FA treatment inhibited inflammation and enhanced systemic insulin sensitivity in WT mice, but was without effect in GPR120 knockout mice. In conclusion, GPR120 is a functional -3 FA receptor/sensor and mediates potent insulin sensitizing and antidiabetic effects in vivo by repressing macrophage-induced tissue inflammation.

From press release:

Researchers at the University of California, San Diego School of Medicine have identified the molecular mechanism that makes omega-3 fatty acids so effective in reducing chronic inflammation and insulin resistance.

The discovery could lead to development of a simple dietary remedy for many of the more than 23 million Americans suffering from diabetes and other conditions.

Writing in the advance online edition of the September 3 issue of the journal Cell, Jerrold Olefsky, MD, and colleagues identified a key receptor on macrophages abundantly found in obese body fat. Obesity and diabetes are closely correlated. The scientists say omega-3 fatty acids activate this macrophage receptor, resulting in broad anti-inflammatory effects and improved systemic insulin sensitivity.

Macrophages are specialized white blood cells that engulf and digest cellular debris and pathogens. Part of this immune system response involves the macrophages secreting cytokines and other proteins that cause inflammation, a method for destroying cells and objects perceived to be harmful. Obese fat tissue contains lots of these macrophages producing lots of cytokines. The result can be chronic inflammation and rising insulin resistance in neighboring cells over-exposed to cytokines. Insulin resistance is the physical condition in which the natural hormone insulin becomes less effective at regulating blood sugar levels in the body, leading to myriad and often severe health problems, most notably type 2 diabetes mellitus.

Olefsky and colleagues looked at cellular receptors known to respond to fatty acids. They eventually narrowed their focus to a G-protein receptor called GPR120, one of a family of signaling molecules involved in numerous cellular functions. The GPR120 receptor is found only on pro-inflammatory macrophages in mature fat cells. When the receptor is turned off, the macrophage produces inflammatory effects. But exposed to omega-3 fatty acids, specifically docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the GPR120 receptor is activated and generates a strong anti-inflammatory effect.

"It's just an incredibly potent effect," said Olefsky, a professor of medicine and associate dean of scientific affairs for the UC San Diego School of Medicine. "The omega-3 fatty acids switch on the receptor, killing the inflammatory response."

The scientists conducted their research using cell cultures and mice, some of the latter genetically modified to lack the GPR120 receptor. All of the mice were fed a high-fat diet with or without omega-3 fatty acid supplementation. The supplementation treatment inhibited inflammation and enhanced insulin sensitivity in ordinary obese mice, but had no effect in GPR120 knockout mice. A chemical agonist of omega-3 fatty acids produced similar results.

"This is nature at work," said Olefsky. "The receptor evolved to respond to a natural product -- omega-3 fatty acids -- so that the inflammatory process can be controlled. Our work shows how fish oils safely do this, and suggests a possible way to treating the serious problems of inflammation in obesity and in conditions like diabetes, cancer and cardiovascular disease through simple dietary supplementation."

However, Olefsky said more research is required. For example, it remains unclear how much fish oil constitutes a safe, effective dose. High consumption of fish oil has been linked to increased risk of bleeding and stroke in some people.

Should fish oils prove impractical as a therapeutic agent, Olefsky said the identification of the GPR120 receptor means researchers can work toward developing an alternative drug that mimics the actions of DHA and EPA and provides the same anti-inflammatory effects.

Study Information

Da Young Oh, Saswata Talukdar, Eun Ju Bae, Takeshi Imamura, Hidetaka Morinaga, WuQiang Fan, Pingping Li, Wendell J. Lu, Steven M. Watkins, Jerrold M. Olefsky.
GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects.
Cell
2010 September
University of California - San Diego.
September Sale

NOVEMBER SALE

Strengthen your immune health naturally!