HEALTH NEWS
Study Title:
Research reveals the mechanism of the sodium-potassium pump
Study Abstract
Researchers have established the structure of a crucial enzyme -- the so-called sodium-potassium pump -- which forms part of every cell in the human body. The result may pave the way for a better understanding of neurological diseases.
It's not visible to the naked eye and you can't feel it, but up to 40 per cent of your body's energy goes into supplying the microscopic sodium-potassium pump with the energy it needs. The pump is constantly doing its job in every cell of all animals and humans. It works much like a small battery which, among other things, maintains the sodium balance which is crucial to keep muscles and nerves working.
The sodium-potassium pump transports sodium out and potassium into the cell in a fixed cycle. During this process the structure of the pump changes. It is well-established that the pump has a sodium and a potassium form. But the structural differences between the two forms have remained a mystery, and researchers have been unable to explain how the pump distinguishes sodium from potassium.
Structure solves the mystery
Thanks to the international collaboration between Professor Chikashi Toyoshima's group at the University of Tokyo and researchers from Aarhus University, the structure of the sodium-bound form of the protein has now been described. For the first time ever, the sodium ions can be studied at a resolution so high - 0.28 nanometres - that researchers can actually see the sodium ions and observe where they bind in the structure of the pump. In 2000, Professor Chikashi Toyoshima's group described the structure of a calcium-pump for the first time, and in 2007 and 2009 research groups from Aarhus University and Toyoshima's group described the potassium-bound form of the sodium-potassium pump.