HEALTH NEWS
Study Title:
Insulin modulates network activity in olfactory bulb slices: impact on odour processing.
Study Abstract
Odour perception depends closely on nutritional status, in animals as in humans. Insulin, the principal anorectic hormone, appears to be one of the major candidates for ensuring the link between olfactory abilities and nutritional status, by modifying processing in the olfactory bulb (OB), one of its main central targets. The present study investigates whether and how insulin can act in OB, by evaluating its action on the main output neurons activities, mitral cells (MCs), in acute rat OB slices. Insulin was found to act at two OB network levels: (1) on MCs, by increasing their excitability, probably by inhibiting two voltage-gated potassium (K(+)) channels; (2) on interneurons by modifying the GABAergic and on glutamatergic synaptic activity impinging on MCs, mainly reducing them. Insulin also altered the olfactory nerve (ON)-evoked excitatory postsynaptic currents in 60% of MCs. Insulin decreased or increased the ON-evoked responses in equal proportion and the direction of its effect depended on the initial neuron ON-evoked firing rate. Indeed, insulin tended to decrease the high and to increase the low ON-evoked firing rates, thereby reducing inter-MC response firing variability. Therefore, the effects of insulin on the evoked firing rates were not carried out indiscriminately in the MC population. By constructing a mathematical model, the impact of insulin complex effects on OB was assessed at the population activity level. The model shows that the reduction of variability across cells could affect MC detection and discrimination abilities, mainly by decreasing and, less frequently, increasing them, depending on odour quality. Thus, as previously proposed, this differential action of insulin on MCs across odours would allow this hormone to put the olfactory function under feeding signal control, given the discerning valence of an odour as a function of nutritional status.
Study Information
J Physiol. 2014 Jul 1;592(13):2751-69. doi: 10.1113/jphysiol.2013.269639. Epub 2014 Apr 7. PMID: 24710056; PMCID: PMC4221818.Full Study
https://pubmed.ncbi.nlm.nih.gov/24710056/Recent News
Arabinogalactan Boosts Lymph Flow and Immunity
Protect Your Gut Mucosal Barrier for Immune Health and Vitality
The Truth About Sugar Substitutes: Are Stevia, Sucralose, and Saccharin Safe?
Boost Your Digestive Power for Better Nutrient Absorption and Gut Health
MTHFR Gene and The Importance of Methyl B12 and Methyl Folate