HEALTH NEWS
Study Title:
Gut clock: implication of circadian rhythms in the gastrointestinal tract.
Study Abstract
Circadian and seasonal rhythms are a fundamental feature of all living organisms and their organelles. Biological rhythms are responsible for daily food intake; the period of hunger and satiety is controlled by the central pacemaker, which resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and communicates with tissues via bidirectional neuronal and humoral pathways. The molecular basis for circadian timing in the gastrointestinal tract (GIT) involves interlocking transcriptional/translational feedback loops which culminate in the rhythmic expression and activity of a set of clock genes and related hormones. Interestingly, it has been found that clocks in the GIT are responsible for the periodic activity (PA) of its various segments and transit along the GIT; they are localized in special interstitial cells, with unstable membrane potentials located between the longitudinal and circular muscle layers. The rhythm of slow waves is controlled in various segments of the GIT: in the stomach (about 3 cycles per min), in the duodenum (12 cycle per min), in the jejunum and ileum (from 7 to 10 cycles per min), and in the colon (12 cycles per min). The migrating motor complex (MMC) starts in the stomach and moves along the gut causing peristaltic contractions when the electrical activity spikes are superimposed on the slow waves. GIT hormones, such as motilin and ghrelin, are involved in the generation of MMCs, while others (gastrin, ghrelin, cholecystokinin, serotonin) are involved in the generation of spikes upon the slow waves, resulting in peristaltic or segmental contractions in the small (duodenum, jejunum ileum) and large bowel (colon). Additionally, melatonin, produced by neuro-endocrine cells of the GIT mucosa, plays an important role in the internal biological clock, related to food intake (hunger and satiety) and the myoelectric rhythm (produced primarily by the pineal gland during the dark period of the light-dark cycle). This appears to be an endocrine encoding of the environmental light-dark cycle, conveying photic information which is used by organisms for both circadian and seasonal organization. Motor and secretory activity, as well as the rhythm of cell proliferation in the GIT and liver, are subject to many circadian rhythms, mediated by autonomic cells and some enterohormones (gastrin, ghrelin and somatostatin). Disruption of circadian physiology, due to sleep disturbance or shift work, may result in various gastrointestinal diseases, such as irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD) or peptic ulcer disease. In addition, circadian disruption accelerates aging, and promotes tumorigenesis in the liver and GIT. Identification of the molecular basis and role of melatonin in the regulation of circadian rhythm allows researchers and clinicians to approach gastrointestinal diseases from a chronobiological perspective. Clinical studies have demonstrated that the administration of melatonin improves symptoms in patients with IBS and GERD. Moreover, our own studies indicate that melatonin significantly protects gastrointestinal mucosa, and has strong protective effects on the liver in patients with non-alcoholic steatohepatitis (NASH). Recently, it has been postulated that disruption of circadian regulation may lead to obesity by shifting food intake schedules. Future research should focus on the role of clock genes in the pathophysiology of the GIT and liver.