HEALTH NEWS
Study Title:
A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation.
Study Abstract
BACKGROUND:
Emerging evidence indicates gut microbes and their products could activate the autonomic nervous system (ANS), which plays important roles in the initiation and maintenance of atrial fibrillation (AF). Trimethylamine N-oxide (TMAO), a metabolite derived from gut microbes, is associated with cardiovascular diseases. The present study aimed to investigate the role of TMAO in the progression of AF.
METHODS:
In part 1: TMAO or saline was locally injected into 4 major atrial ganglionated plexi (GP) to clarify its effect on cardiac ANS and AF inducibility in normal canines. In part 2: TMAO or saline was injected into 4 major atrial GP to test its effect on AF progression in a rapid atrial pacing (RAP)-induced AF model.
RESULTS:
In part 1: Local injection of TMAO significantly increased anterior right GP (ARGP) function and neural activity, shortened ERP values. In part 2, compared with the control group, 6-hour RAP significantly shortened the ERP, widened the ∑WOV, enhanced the ARGP function and neural activity, increased the NGF and c-fos expression, and up-regulated the inflammatory cytokines. TMAO aggravated all of these changes by activating the proinflammatory p65 NF-κB signaling pathway.
CONCLUSIONS:
TMAO could increase the instability of atrial electrophysiology in normal canines and aggravate the acute electrical remodeling in a RAP-induced AF model by exacerbating autonomic remodeling. The increased inflammatory cytokines in the GP due to the activation of p65 NF-κB signaling may contribute to these effects.